10 Outcomes of Agro biotech which is improving the global agricultural sector

Biotechnology has often been considered alike with biomedical research, but there are many other industries that take advantage of biotech methods for studying, cloning, and altering genes. We have become accustomed to the idea of enzymes in our everyday lives, and many people are familiar with the controversies surrounding the use of GMOs in our foods. The agricultural industry is a part of the biotech industry, which is growing at an appreciable rate and also helping the betterment of our lives. Here are the top ten agriculture biotech applications that are being used on day to day life for the betterment of humans.

1. Antibiotics


Plants are used for the production of antibiotics for both animals and humans. Expressing the antibiotic proteins in the feed, which is fed directly to animals, can cost lesser than traditional antibiotic production, but this practice may raise bioethics issues because of unnecessary use of antibiotics that may promote the growth of antibiotic-resistant bacterial strains. Many advantages of using plants for the production of antibiotics for humans are reduced costs due to the larger amount of product that can be produced from plants vs. a fermentation unit, ease of purification, and reduced risk of contamination compared to that of using mammalian cells and culture media.

 2. Flowers


There is more to agricultural biotechnology than just fighting disease or improving food quality. Some of them are purely aesthetic applications, and an example of this is the use of gene identification and transfer techniques to improve the color, size, smell, and other features of flowers. Likewise, biotechnology has been used to make improvements to other common ornamental plants, shrubs, and trees. Some of these changes are similar to those made to crops, such as enhancing cold resistance of a breed of tropical plants, so it can be grown in northern gardens.

3. Biofuels


The agricultural industry plays a large role in the biofuels industry as it provides the feedstocks for refining and fermentation of bioethanol, bio-oil, bio-diesel. Genetic engineering and enzyme optimization techniques are being used to develop better quality feedstocks for more efficient conversion. High-yield, energy-dense crops can minimize relative costs associated with harvesting and transportation, resulting in higher value fuel products.

4. Plant and Animal Breeding


Enhancement of plant and animal traits by methods like grafting, cross-pollination, and cross-breeding is time-consuming. Biotechnology advancement allows for specific changes to be made quickly, on a molecular level through over-expression or deletion of genes, or the introduction of foreign genes.  Some methods like marker-assisted selection improve the efficiency of “directed” animal breeding, without the controversy associated with GMOs. Gene cloning methods must also address species differences in the genetic code, the presence or absence of introns, and post-translational modifications such as methylation.

5. Pest Resistant Crops


For many years, the microbe Bacillus thuringiensis, which produces a protein toxic to insects, in particular, the European corn borer, was used for dusting crops. For eliminating the need for dusting, scientists first developed transgenic corn expressing Bt protein, which was followed by Bt potato and Bt cotton. Bt protein is not toxic to humans, and transgenic crops make it easier for farmers to avoid costly infestations. In 1999, controversy emerged over Bt corn because of a study that suggested the pollen migrated onto milkweed where it killed monarch larvae that ate it. Subsequent studies demonstrated the risk to the larvae was very small. And in recent years, the controversy over Bt corn has switched focus to the topic of emerging insect resistance.

6. Pesticide-Resistant Crops


Do not confuse this with pest-resistance. These plants are tolerant of, that allows farmers to kill surrounding weeds without harming their crop selectively. The most famous example of this is the Roundup-Ready technology, developed by Monsanto. First introduced in 1998 as GM soybeans, Roundup-Ready plants are unaffected by the herbicide glyphosate, which can be applied in copious quantities to eliminate other plants in the field. The benefits of this are savings in time and costs associated with conventional tillage to reduce weeds or multiple applications of different types of herbicides to eliminate specific species of weeds selectively. The possible drawbacks include all the controversial arguments against GMOs.

7. Nutrient Supplementation



In an effort to improving human health, particularly in underdeveloped countries, scientists are creating genetically altered foods that contain nutrients known to help fight disease or malnourishment. An example of this is Golden Rice, which contains beta-carotene, the precursor for Vitamin A production in our bodies. People who eat rice produce more Vitamin A, an essential nutrient lacking in the diets of the poor in Asian countries. Three genes, two from daffodils and one from a bacterium, capable of catalyzing four biochemical reactions, were cloned into rice to make it golden. The name comes from the color of the transgenic grain due to the overexpression of beta-carotene, which gives carrots their orange color.

8. Abiotic Stress Resistance


Less than 20% of the earth is arable land, but some crops have been genetically altered to make them more tolerant of conditions like salinity, cold, and drought. The discovery of genes in plants responsible for sodium uptake has lead to the development of knock-out plants able to grow in high salt environments. Up- or down-regulation of transcription is generally the method used to alter drought tolerance in plants. Corn and rapeseed plants, able to thrive under drought conditions, are in their fourth year of field trials in California and Colorado, and it is anticipated that they’ll reach the market in 4-5 years.

9. Industrial Strength Fibers


Spider silk is the strongest fiber known to man, stronger than Kevlar (used to make bullet-proof vests), with a higher tensile strength than steel. In August 2000, Canadian company Nexia announced the development of transgenic goats that produced spider silk proteins in their milk. While this solved the problem of mass-producing the proteins, the program was shelved when scientists couldn’t figure out how to spin them into fibers like spiders do. By 2005, the goats were up for sale to anyone who would take them. While it seems the spider silk idea has been put on the shelf, for the time being, it is a technology that is sure to appear again in the future, once more information is gathered on how the silks are woven.

10. Vaccines

Vaccine in vial with syringe. Vaccination concept. 3d


Oral vaccines have been in the works for many years as a possible solution to the spread of disease in underdeveloped countries, where costs are prohibitive to widespread vaccination. Genetically engineered crops, usually fruits or vegetables designed to carry antigenic proteins from infectious pathogens, will trigger an immune response when ingested. An example of this is a patient-specific vaccine for treating cancer. An anti-lymphoma vaccine has been made using tobacco plants carrying RNA from cloned malignant B-cells. The resulting protein is then used to vaccinate the patient and boost their immune system against cancer. Tailor-made vaccines for cancer treatment have shown considerable promise in preliminary studies.

Sharing is caring!