Is CRISPR cas9 the latest hype in science world?

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is associated with protein 9 nucleus (Cas9) is a genomic tool which has enabled scientist to edit the parts of a genome sequence by cutting it out, replacing as well as adding parts to a DNA sequence. It is currently the most versatile, simplest, and precise method for genetic manipulation and has been creating a buzz in the world of science. Research teams and scientist are very keen on finding a way which ensures that CRISPR-Cas9 would bind and cut accurately.

These are two ways that can help to achieve it:

1. The use of the Cas9 enzyme will only cut a single strand of targeted DNA rather than the double-strand. That means the two Cas9 enzyme and the two guide RNAs have to be in the same place for cutting to be made. This reduces the probability of cut being made in the wrong place.

2. The design of more specific guide RNAs by using the knowledge of DNA sequences of the genome and off-target behaviors of many versions of the Cas9-gRNA complex helps to ensure it binds correctly.

nov18_2015_nhgri_crisprcas91071014223

The applications of CRISPR

It has a lot of potential as a tool for the treatment of the range of medical conditions that have a genetic component, which includes cancer, high cholesterol, and hepatitis B.

There are applications involving the editing of the genomes of somatic ( non-reproductive) cells, but there is more potential for editing the germline, also known as reproductive cells.

Since any changes which are made in germline cells can be passed from one generation to another, this has wider implications. Still, germline cells gene editing is yet to be legalized in many countries, including the UK, etc. Some groups have taken advantage of this method to introduce a single point mutation in a particular targeted gene with the help of single gRNA.

One recent development is the use of this technique to target protein domains for transcriptional regulations, microscopic visualization of specific loci, etc.

CRISPR/Cas9 has enabled rapid genome-wide interrogation of gene function by generating a large gRNA library for genomic screening.

Where is the future of CRISPR Cas9 going? And what are the expectations regarding it?

Some of them are listed below:

  • One thing for sure, in the future, this technology will be used routinely in human beings
  • Although the research is only focused on animal models or isolated human cells, there are possibilities that CRISPR will be used for the treatment of human diseases.
  • There is a lot of focus on the elimination of “off-target” effects in which this technology cuts in different genes to one which is intended to be edited.

Sharing is caring!